
https://pythonschoolkvs.wordpress.com/ Page 1

https://pythonschoolkvs.wordpress.com/
CLASS-XI

SUBJECT: COMPUTER SCIENCE (083) – PYTHON

INDEX

CHAPTER

NO.
CHAPTER NAME

PAGE

NO.

1 INTRODUCTION TO PYTHON 2

2 PYTHON FUNDAMENTALS 5

3 DATA HANDLING 16

4 FLOW OF CONTROL 27

5 FUNCTIONS IN PYTHON 38

6 STRING IN PYTHON 50

7 LIST IN PYTHON 61

8 TUPLE IN PYTHON 75

9 DICTIONARY IN PYTHON 85

10 SORTING 95

11 DEBUGGING PROGRAMS 99

12 EXPLANATION OF KEYWORDS 103

By: Vikash Kumar Yadav

PGT-Computer Science

K.V. No.-IV ONGC Vadodara

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 2

CHAPTER-1

INTRODUTION TO PYTHON

1.1 Introduction:

 General-purpose Object Oriented Programming language.

 High-level language

 Developed in late 1980 by Guido van Rossum at National Research Institute for

Mathematics and Computer Science in the Netherlands.

 It is derived from programming languages such as ABC, Modula 3, small talk, Algol-

68.

 It is Open Source Scripting language.

 It is Case-sensitive language (Difference between uppercase and lowercase letters).

 One of the official languages at Google.

1.2 Characteristics of Python:

 Interpreted: Python source code is compiled to byte code as a .pyc file, and this byte

code can be interpreted by the interpreter.

 Interactive

 Object Oriented Programming Language

 Easy & Simple

 Portable

 Scalable: Provides improved structure for supporting large programs.

 Integrated

 Expressive Language

1.3 Python Interpreter:

Names of some Python interpreters are:

 PyCharm

 Python IDLE

 The Python Bundle

 pyGUI

 Sublime Text etc.

There are two modes to use the python interpreter:

i. Interactive Mode

ii. Script Mode

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 3

i. Interactive Mode: Without passing python script file to the interpreter, directly

execute code to Python (Command line).

Example:

>>>6+3

Output: 9

Fig: Interactive Mode

Note: >>> is a command the python interpreter uses to indicate that it is ready. The

interactive mode is better when a programmer deals with small pieces of code.

To run a python file on command line:

exec(open(“C:\Python33\python programs\program1.py”).read())

ii. Script Mode: In this mode source code is stored in a file with the .py extension

and use the interpreter to execute the contents of the file. To execute the script by the

interpreter, you have to tell the interpreter the name of the file.

Example:

 if you have a file name Demo.py , to run the script you have to follow the following

steps:

Step-1: Open the text editor i.e. Notepad

Step-2: Write the python code and save the file with .py file extension. (Default

 directory is C:\Python33/Demo.py)

Step-3: Open IDLE (Python GUI) python shell

Step-4: Click on file menu and select the open option

Step-5: Select the existing python file

Step-6: Now a window of python file will be opened

Step-7: Click on Run menu and the option Run Module.

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 4

Step-8: Output will be displayed on python shell window.

Fig. : IDLE (Python GUI)

 Fig: Python Shell

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 5

CHAPTER-2

PYTHON FUNDAMENTALS

2.1 Python Character Set :

It is a set of valid characters that a language recognize.

Letters: A-Z, a-z

Digits : 0-9

Special Symbols

Whitespace

2.2 TOKENS

Token: Smallest individual unit in a program is known as token.

There are five types of token in python:

1. Keyword

2. Identifier

3. Literal

4. Operators

5. Punctuators

1. Keyword: Reserved words in the library of a language. There are 33 keywords in

python.

False class finally is return break

None continue for lambda try except

True def from nonlocal while in

and del global not with raise

as elif if or yield

assert else import pass

All the keywords are in lowercase except 03 keywords (True, False, None).

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 6

2. Identifier: The name given by the user to the entities like variable name, class-name,

function-name etc.

Rules for identifiers:

 It can be a combination of letters in lowercase (a to z) or uppercase (A to Z) or

digits (0 to 9) or an underscore.

 It cannot start with a digit.

 Keywords cannot be used as an identifier.

 We cannot use special symbols like !, @, #, $, %, + etc. in identifier.

 _ (underscore) can be used in identifier.

 Commas or blank spaces are not allowed within an identifier.

3. Literal: Literals are the constant value. Literals can be defined as a data that is given in

a variable or constant.

A. Numeric literals: Numeric Literals are immutable.

Eg.

5, 6.7, 6+9j

Literal

Numeric

int float complex

String Boolean

True False

Special

None

Literal
Collections

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 7

B. String literals:

String literals can be formed by enclosing a text in the quotes. We can use both single as

well as double quotes for a String.

Eg:

"Aman" , '12345'

 Escape sequence characters:

\\ Backslash

\’ Single quote

\” Double quote

\a ASCII Bell

\b Backspace

\f ASCII Formfeed

\n New line charater

\t Horizontal tab

C. Boolean literal: A Boolean literal can have any of the two values: True or False.

D. Special literals: Python contains one special literal i.e. None.

None is used to specify to that field that is not created. It is also used for end of lists in

 Python.

E. Literal Collections: Collections such as tuples, lists and Dictionary are used in Python.

4. Operators: An operator performs the operation on operands. Basically there are two

types of operators in python according to number of operands:

A. Unary Operator

B. Binary Operator

A. Unary Operator: Performs the operation on one operand.

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 8

Example:

+ Unary plus

- Unary minus

~ Bitwise complement

not Logical negation

B. Binary Operator: Performs operation on two operands.

5. Separator or punctuator : , ; , (), { }, []

2.3 Mantissa and Exponent Form:

A real number in exponent form has two parts:

 mantissa

 exponent

Mantissa : It must be either an integer or a proper real constant.

Exponent : It must be an integer. Represented by a letter E or e followed by integer value.

Valid Exponent form Invalid Exponent form

123E05 2.3E (No digit specified for exponent)

0.24E3.2 (Exponent cannot have fractional part)

23,455E03 (No comma allowed)

1.23E07

0.123E08

123.0E08

123E+8

1230E04

-0.123E-3

163.E4

.34E-2

4.E3

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 9

2.4 Basic terms of a Python Programs:

A. Blocks and Indentation

B. Statements

C. Expressions

D. Comments

A. Blocks and Indentation:

 Python provides no braces to indicate blocks of code for class and function definition or

flow control.

 Maximum line length should be maximum 79 characters.

 Blocks of code are denoted by line indentation, which is rigidly enforced.

 The number of spaces in the indentation is variable, but all statements within the block

must be indented the same amount.

for example –

if True:

 print(“True”)

else:

 print(“False”)

B. Statements

 A line which has the instructions or expressions.

C. Expressions:

A legal combination of symbols and values that produce a result. Generally it produces a value.

D. Comments: Comments are not executed. Comments explain a program and make a

program understandable and readable. All characters after the # and up to the end of the

physical line are part of the comment and the Python interpreter ignores them.

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 10

There are two types of comments in python:

 i. Single line comment

ii. Multi-line comment

i. Single line comment: This type of comments start in a line and when a line ends, it is

automatically ends. Single line comment starts with # symbol.

Example: if a>b: # Relational operator compare two values

ii. Multi-Line comment: Multiline comments can be written in more than one lines. Triple

quoted ‘ ’ ’ or “ ” ”) multi-line comments may be used in python. It is also known as

docstring.

Example:

‘’’ This program will calculate the average of 10 values.

 First find the sum of 10 values

 and divide the sum by number of values

 ‘’’

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 11

Multiple Statements on a Single Line:

The semicolon (;) allows multiple statements on the single line given that neither statement

starts a new code block.

Example:-

x=5; print(“Value =” x)

2.5 Variable/Label in Python:

Definition: Named location that refers to a value and whose value can be used and processed

during program execution.

Variables in python do not have fixed locations. The location they refer to changes every time

their values change.

Creating a variable:

A variable is created the moment you first assign a value to it.

Example:

x = 5

y = “hello”

Variables do not need to be declared with any particular type and can even change type after

they have been set. It is known as dynamic Typing.

x = 4 # x is of type int

x = "python" # x is now of type str

print(x)

Rules for Python variables:

 A variable name must start with a letter or the underscore character

 A variable name cannot start with a number

 A variable name can only contain alpha-numeric characters and underscore (A-z, 0-9,

and _)

 Variable names are case-sensitive (age, Age and AGE are three different variables)

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 12

Python allows assign a single value to multiple variables.

Example: x = y = z = 5

You can also assign multiple values to multiple variables. For example −

x , y , z = 4, 5, “python”

4 is assigned to x, 5 is assigned to y and string “python” assigned to variable z respectively.

x=12

y=14

x,y=y,x

print(x,y)

Now the result will be

14 12

Lvalue and Rvalue:

An expression has two values. Lvalue and Rvalue.

Lvalue: the LHS part of the expression

Rvalue: the RHS part of the expression

Python first evaluates the RHS expression and then assigns to LHS.

Example:

p, q, r= 5, 10, 7

q, r, p = p+1, q+2, r-1

print (p,q,r)

Now the result will be:

6 6 12

Note: Expressions separated with commas are evaluated from left to right and assigned in same

order.

 If you want to know the type of variable, you can use type() function :

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 13

Syntax:

 type (variable-name)

Example:

x=6

type(x)

The result will be:

<class ‘int’>

 If you want to know the memory address or location of the object, you can use id()

function.

Example:

>>>id(5)

1561184448

>>>b=5

>>>id(b)

1561184448

You can delete single or multiple variables by using del statement. Example:

del x

del y, z

2.6 Input from a user:

input() method is used to take input from the user.

Example:

print("Enter your name:")

x = input()

print("Hello, " + x)

 input() function always returns a value of string type.

2.7 Type Casting:

To convert one data type into another data type.

Casting in python is therefore done using constructor functions:

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 14

 int() - constructs an integer number from an integer literal, a float literal or a string

literal.

Example:

x = int(1) # x will be 1

y = int(2.8) # y will be 2

z = int("3") # z will be 3

 float() - constructs a float number from an integer literal, a float literal or a string literal.

Example:

x = float(1) # x will be 1.0

y = float(2.8) # y will be 2.8

z = float("3") # z will be 3.0

w = float("4.2") # w will be 4.2

 str() - constructs a string from a wide variety of data types, including strings, integer

literals and float literals.

Example:

x = str("s1") # x will be 's1'

y = str(2) # y will be '2'

z = str(3.0) # z will be '3.0'

Reading a number from a user:

x= int (input(“Enter an integer number”))

2.8 OUTPUT using print() statement:

Syntax:

 print(object, sep=<separator string >, end=<end-string>)

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 15

object : It can be one or multiple objects separated by comma.

sep : sep argument specifies the separator character or string. It separate the objects/items. By

default sep argument adds space in between the items when printing.

end : It determines the end character that will be printed at the end of print line. By default it

has newline character(‘\n’).

Example:

x=10

y=20

z=30

print(x,y,z, sep=’@’, end= ‘ ‘)

Output:

10@20@30

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 16

CHAPTER-3

DATA HANDLING

3.1 Data Types in Python:

Python has Two data types –

1. Primitive Data Type (Numbers, String)

2. Collection Data Type (List, Tuple, Set, Dictionary)

1. Primitive Data Types:

a. Numbers: Number data types store numeric values.

There are three numeric types in Python:

 int

 float

 complex

Example:

w = 1 # int

y = 2.8 # float

z = 1j # complex

Data Types

Primitive
Data Type

Number

int float complex

String

Collection
Data Type

List Tuple Set Dictionary

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 17

 integer : There are two types of integers in python:

 int

 Boolean

 int: int or integer, is a whole number, positive or negative, without decimals.

Example:

x = 1

y = 35656222554887711

z = -3255522

 Boolean: It has two values: True and False. True has the value 1 and False has the

value 0.

 Example:

>>>bool(0)

False

>>>bool(1)

True

>>>bool(‘ ‘)

False

>>>bool(-34)

True

>>>bool(34)

True

 float : float or "floating point number" is a number, positive or negative, containing one

or more decimals. Float can also be scientific numbers with an "e" to indicate the power

of 10.

Example:

x = 1.10

y = 1.0

z = -35.59

a = 35e3

b = 12E4

c = -87.7e100

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 18

 complex : Complex numbers are written with a "j" as the imaginary part.

Example:

>>>x = 3+5j

>>>y = 2+4j

>>>z=x+y

>>>print(z)

5+9j

>>>z.real

5.0

>>>z.imag

9.0

Real and imaginary part of a number can be accessed through the attributes real and imag.

b. String: Sequence of characters represented in the quotation marks.

 Python allows for either pairs of single or double quotes. Example: 'hello' is the same

as "hello" .

 Python does not have a character data type, a single character is simply a string with a

length of 1.

 The python string store Unicode characters.

 Each character in a string has its own index.

 String is immutable data type means it can never change its value in place.

2. Collection Data Type:

 List

 Tuple

 Set

 Dictionary

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 19

3.2 MUTABLE & IMMUTABLE Data Type:

 Mutable Data Type:

These are changeable. In the same memory address, new value can be stored.

Example: List, Set, Dictionary

 Immutable Data Type:

These are unchangeable. In the same memory address new value cannot be stored.

Example: integer, float, Boolean, string and tuple.

3.3 Basic Operators in Python:

i. Arithmetic Operators

ii. Relational Operator

iii. Logical Operators

iv. Bitwise operators

v. Assignment Operators

vi. Other Special Operators

o Identity Operators

o Membership operators

i. Arithmetic Operators: To perform mathematical operations.

OPERATOR NAME SYNTAX
RESULT

(X=14, Y=4)

+ Addition x + y 18

_ Subtraction x – y 10

* Multiplication x * y 56

/ Division (float) x / y 3.5

// Division (floor) x // y 3

% Modulus x % y 2

** Exponent x**y 38416

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 20

Example:
>>>x= -5

>>>x**2

>>> -25

ii. Relational Operators: Relational operators compare the values. It either

returns True or False according to the condition.

OPERATOR NAME SYNTAX
RESULT

(IF X=16, Y=42)

> Greater than x > y
False

< Less than x < y
True

== Equal to x == y
False

!= Not equal to x != y
True

>= Greater than or equal to x >= y
False

<= Less than or equal to x <= y
True

iii. Logical operators: Logical operators perform Logical AND, Logical OR and Logical

 NOT operations.

Examples of Logical Operator:

The and operator: The and operator works in two ways:

 a. Relational expressions as operands

 b. numbers or strings or lists as operands

OPERATOR DESCRIPTION SYNTAX

and Logical AND: True if both the operands are true x and y

or Logical OR: True if either of the operands is true x or y

not Logical NOT: True if operand is false not x

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 21

a. Relational expressions as operands:

X Y X and Y

False False False

False True False

True False False

True True True

 >>> 5>8 and 7>3

False

>>> (4==4) and (7==7)

True

b. numbers or strings or lists as operands:

In an expression X and Y, if first operand has false value, then return first operand X as a

result, otherwise returns Y.

>>>0 and 0

0

>>>0 and 6

0

>>>‘a’ and ‘n’

’n’

>>>6>9 and ‘c’+9>5 # and operator will test the second operand only if the first operand

False # is true, otherwise ignores it, even if the second operand is wrong

The or operator: The or operator works in two ways:

 a. Relational expressions as operands

 b. numbers or strings or lists as operands

a. Relational expressions as operands:

X Y X or Y

False False False

False True True

True False True

True True True

 >>> 5>8 or 7>3

True

>>> (4==4) or (7==7)

True

X Y X and Y

false false X

false true X

true false Y

true true Y

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 22

b. numbers or strings or lists as operands:

In an expression X or Y, if first operand has true value, then return first operand X as a

result, otherwise returns Y.

X Y X or Y

false false Y

false true Y

true false X

true true X

>>>0 or 0

0

>>>0 or 6

6

>>>‘a’ or ‘n’

’a’

>>>6<9 or ‘c’+9>5 # or operator will test the second operand only if the first operand

True # is false, otherwise ignores it, even if the second operand is wrong

The not operator:

>>>not 6

False

>>>not 0

True

>>>not -7

False

Chained Comparison Operators:

>>> 4<5>3 is equivalent to >>> 4<5 and 5>3

True True

iv. Bitwise operators: Bitwise operators acts on bits and performs bit by bit operation.

OPERATOR DESCRIPTION SYNTAX

& Bitwise AND x & y

| Bitwise OR x | y

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 23

~ Bitwise NOT ~x

^ Bitwise XOR x ^ y

>> Bitwise right shift x>>

<< Bitwise left shift x<<

Examples:

Let

a = 10

b = 4

print(a & b)

print(a | b)

print(~a)

print(a ^ b)

print(a >> 2)

print(a << 2)

v. Assignment operators: Assignment operators are used to assign values to the variables.

OPERA

TOR DESCRIPTION SYNTAX

= Assign value of right side of expression to left side operand x = y + z

+=
Add AND: Add right side operand with left side operand and

then assign to left operand

a+=b

a=a+b

-=
Subtract AND: Subtract right operand from left operand and then

assign to left operand

a-=b a=a-

b

*=
Multiply AND: Multiply right operand with left operand and then

assign to left operand

a*=b

a=a*b

Output:

0

14

-11

14

2

40

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 24

/=
Divide AND: Divide left operand with right operand and then

assign to left operand

a/=b

a=a/b

%=
Modulus AND: Takes modulus using left and right operands and

assign result to left operand

a%=b

a=a%b

//=
Divide(floor) AND: Divide left operand with right operand and

then assign the value(floor) to left operand

a//=b

a=a//b

**=
Exponent AND: Calculate exponent(raise power) value using

operands and assign value to left operand

a**=b

a=a**b

&=
Performs Bitwise AND on operands and assign value to left

operand

a&=b

a=a&b

|=
Performs Bitwise OR on operands and assign value to left

operand

a|=b

a=a|b

^=
Performs Bitwise xOR on operands and assign value to left

operand

a^=b

a=a^b

>>=
Performs Bitwise right shift on operands and assign value to left

operand

a>>=b

a=a>>b

<<=
Performs Bitwise left shift on operands and assign value to left

operand

a <<=b a=

a << b

vi. Other Special operators: There are some special type of operators like-

a. Identity operators- is and is not are the identity operators both are used to check if

two values are located on the same part of the memory. Two variables that are equal

does not imply that they are identical.

is True if the operands are identical

is not True if the operands are not identical

Example:

Let

a1 = 3

b1 = 3

a2 = 'PythonProgramming'

b2 = 'PythonProgramming'

a3 = [1,2,3]

b3 = [1,2,3]

print(a1 is not b1)

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 25

print(a2 is b2) # Output is False, since lists are mutable.

print(a3 is b3)

Output:

False

True

False

Example:

>>>str1= “Hello”

>>>str2=input(“Enter a String :”)

Enter a String : Hello

>>>str1==str2 # compares values of string

True

>>>str1 is str2 # checks if two address refer to the same memory address

False

b. Membership operators- in and not in are the membership operators; used to test

whether a value or variable is in a sequence.

in True if value is found in the sequence

not in True if value is not found in the sequence

Example:

Let

x = 'Digital India'

y = {3:'a',4:'b'}

print('D' in x)

print('digital' not in x)

print('Digital' not in x)

print(3 in y)

print('b' in y)

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 26

Output:

True

True

False

True

False

3.4 Operator Precedence and Associativity:

Operator Precedence: It describes the order in which operations are performed when an

expression is evaluated. Operators with higher precedence perform the operation first.

Operator Associativity: whenever two or more operators have the same precedence, then

associativity defines the order of operations.

Operator Description Associativity Precedence

(), { } Parentheses (grouping) Left to Right

f(args…) Function call Left to Right

x[index:index] Slicing Left to Right

x[index] Subscription Left to Right

** Exponent Right to Left

~x Bitwise not Left to Right

+x, -x Positive, negative Left to Right

*, /, % Product, division, remainder Left to Right

+, – Addition, subtraction Left to Right

<<, >> Shifts left/right Left to Right

& Bitwise AND Left to Right

^ Bitwise XOR Left to Right

| Bitwise OR Left to Right

<=, <, >, >= Comparisons Left to Right

=, %=, /=, += Assignment

is, is not Identity

in, not in Membership

not Boolean NOT Left to Right

and Boolean AND Left to Right

or Boolean OR Left to Right

lambda Lambda expression Left to Right

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 27

CHAPTER-4

FLOW OF CONTROL

1. Decision Making and branching (Conditional Statement)

2. Looping or Iteration

3. Jumping statements

4.1 DECISION MAKING & BRANCHING

Decision making is about deciding the order of execution of statements based on certain

conditions. Decision structures evaluate multiple expressions which produce TRUE or FALSE

as outcome.

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 28

There are three types of conditions in python:

1. if statement

2. if-else statement

3. elif statement

1. if statement: It is a simple if statement. When condition is true, then code which is

associated with if statement will execute.

Example:

a=40

b=20

if a>b:

 print(“a is greater than b”)

2. if-else statement: When the condition is true, then code associated with if statement will

execute, otherwise code associated with else statement will execute.

Example:

a=10

b=20

if a>b:

 print(“a is greater”)

else:

 print(“b is greater”)

3. elif statement: It is short form of else-if statement. If the previous conditions were not true,

then do this condition". It is also known as nested if statement.

Example:

a=input(“Enter first number”)

b=input("Enter Second Number:")

if a>b:

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 29

 print("a is greater")

elif a==b:

 print("both numbers are equal")

else:

 print("b is greater")

4.2 LOOPS in PYTHON

Loop: Execute a set of statements repeatedly until a particular condition is satisfied.

There are two types of loops in python:

1. while loop

2. for loop

Loops in
Python

while
loop

for loop

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 30

1. while loop: With the while loop we can execute a set of statements as long as a condition is

true. It requires to define an indexing variable.

Example: To print table of number 2

i=2

while i<=20:

 print(i)

 i+=2

2. for loop : The for loop iterate over a given sequence (it may be list, tuple or string).

Note: The for loop does not require an indexing variable to set beforehand, as the for command

itself allows for this.

primes = [2, 3, 5, 7]

for x in primes:

 print(x)

The range() function:

it generates a list of numbers, which is generally used to iterate over with for loop.

range() function uses three types of parameters, which are:

 start: Starting number of the sequence.

 stop: Generate numbers up to, but not including last number.

 step: Difference between each number in the sequence.

Python use range() function in three ways:

a. range(stop)

b. range(start, stop)

c. range(start, stop, step)

Note:

 All parameters must be integers.

 All parameters can be positive or negative.

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 31

a. range(stop): By default, It starts from 0 and increments by 1 and ends up to stop,

but not including stop value.

Example:

for x in range(4):

 print(x)

Output:

0

1

2

3

b. range(start, stop): It starts from the start value and up to stop, but not including

stop value.

Example:

for x in range(2, 6):

 print(x)

Output:

2

3

4

5

c. range(start, stop, step): Third parameter specifies to increment or decrement the value by

adding or subtracting the value.

Example:

for x in range(3, 8, 2):

 print(x)

Output:

3

5

7

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 32

Explanation of output: 3 is starting value, 8 is stop value and 2 is step value. First print 3 and

increase it by 2, that is 5, again increase is by 2, that is 7. The output can’t exceed stop-1 value

that is 8 here. So, the output is 3, 5, 8.

Difference between range() and xrange():

S.

No. range() xrange()

1 returns the list of numbers
returns the generator object that can be used

to display numbers only by looping

2
The variable storing the range takes more

memory
variable storing the range takes less memory

3
all the operations that can be applied on

the list can be used on it

operations associated to list cannot be

applied on it

4 slow implementation faster implementation

4.3 JUMP STATEMENTS:

There are two jump statements in python:

1. break

2. continue

1. break statement : With the break statement we can stop the loop even if it is true.

Example:

in while loop in for loop
i = 1
while i < 6:
 print(i)
 if i == 3:
 break
 i += 1

languages = ["java", "python", "c++"]
for x in languages:
 if x == "python":
 break
 print(x)

Output:
1

2
3

Output:
java

Note: If the break statement appears in a nested loop, then it will terminate the very loop it is

in i.e. if the break statement is inside the inner loop then it will terminate the inner loop only

and the outer loop will continue as it is.

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 33

2. continue statement : With the continue statement we can stop the current iteration, and

continue with the next iteration.

Example:

in while loop in for loop
i = 0
while i < 6:
 i += 1
 if i == 3:
 continue
 print(i)

languages = ["java", "python", "c++"]
for x in languages:
 if x == "python":
 continue
 print(x)

Output:
1

2
4

5
6

Output:
java

c++

4.4 Loop else statement:

The else statement of a python loop executes when the loop terminates normally. The else

statement of the loop will not execute when the break statement terminates the loop.

The else clause of a loop appears at the same indentation as that of the loop keyword while or

for.

Syntax:

for loop while loop

for <variable> in <sequence>:

 statement-1

 statement-2

 .

 .

else:

 statement(s)

 while <test condition>:

 statement-1

 statement-2

 .

 .

 else:

 statement(s)

4.5 Nested Loop :

A loop inside another loop is known as nested loop.

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 34

Syntax:

for <variable-name> in <sequence>:

 for <variable-name> in <sequence>:

 statement(s)

 statement(s)

Example:

for i in range(1,4):

 for j in range(1,i):

 print("*", end=" ")

 print(" ")

Programs related to Conditional, looping and jumping statements

1. Write a program to check a number whether it is even or odd.

num=int(input("Enter the number: "))

if num%2==0:

 print(num, " is even number")

else:

 print(num, " is odd number")

2. Write a program in python to check a number whether it is prime or not.

num=int(input("Enter the number: "))

for i in range(2,num):

 if num%i==0:

 print(num, "is not prime number")

 break;

else:

 print(num,"is prime number")

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 35

3. Write a program to check a year whether it is leap year or not.

year=int(input("Enter the year: "))

if year%100==0 and year%400==0:

 print("It is a leap year")

elif year%4==0:

 print("It is a leap year")

else:

 print("It is not leap year")

4. Write a program in python to convert °C to °F and vice versa.

a=int(input("Press 1 for C to F \n Press 2 for F to C \n"))

if a==1:

 c=float(input("Enter the temperature in degree celcius: "))

 f= (9/5)*c+32

 print(c, "Celcius = ",f," Fahrenheit")

elif a==2:

 f=float(input("Enter the temperature in Fahrenheit: "))

 c= (f-32)*5/9

 print(f, "Fahrenheit = ",c," Celcius")

else:

 print("You entered wrong choice")

5. Write a program to check a number whether it is palindrome or not.

num=int(input("Enter a number : "))

n=num

res=0

while num>0:

 rem=num%10

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 36

 res=rem+res*10

 num=num//10

if res==n:

 print("Number is Palindrome")

else:

 print("Number is not Palindrome")

6. A number is Armstrong number or not.

num=input("Enter a number : ")

length=len(num)

n=int(num)

num=n

sum=0

while n>0:

 rem=n%10

 sum=sum+rem**length

 n=n//10

if num==sum:

 print(num, "is armstrong number")

else:

 print(num, "is not armstrong number")

7. To check whether the number is perfect number or not

num=int(input("Enter a number : "))

sum=0

for i in range(1,num):

 if(num%i==0):

 sum=sum+i

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 37

if num==sum:

 print(num, "is perfect number")

else:

 print(num, "is not perfect number")

8. Write a program to print Fibonacci series.

n=int(input("How many numbers : "))

first=0

second=1

i=3

print(first, second, end=" ")

while i<=n:

 third=first+second

 print(third, end=" ")

 first=second

 second=third

 i=i+1

9. To print a pattern using nested loops

for i in range(1,5):

 for j in range(1,i+1):

 print(j," ", end=" ")

 print('\n')

1

1 2

1 2 3

1 2 3 4

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 38

CHAPTER-5

FUNCTIONS IN PYTHON

5.1 Definition: Functions are the subprograms that perform specific task. Functions are the

small modules.

5.2 Types of Functions:

There are two types of functions in python:

1. Library Functions (Built in functions)

2. Functions defined in modules

3. User Defined Functions

1. Library Functions: These functions are already built in the python library.

2. Functions defined in modules: These functions defined in particular modules. When

you want to use these functions in program, you have to import the corresponding module

of that function.

3. User Defined Functions: The functions those are defined by the user are called user

defined functions.

1. Library Functions in Python:

 These functions are already built in the library of python.

For example: type(), len(), input() etc.

Types of functions

Built in functions

Functions defined in
modules

User defined functions

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 39

2. Functions defined in modules:

a. Functions of math module:

To work with the functions of math module, we must import math module in program.

import math

S. No. Function Description Example

1 sqrt() Returns the square root of a number >>>math.sqrt(49)

7.0

2 ceil() Returns the upper integer >>>math.ceil(81.3)

82

3 floor() Returns the lower integer >>>math.floor(81.3)

81

4 pow() Calculate the power of a number >>>math.pow(2,3)

8.0

5 fabs() Returns the absolute value of a number >>>math.fabs(-5.6)

5.6

6 exp() Returns the e raised to the power i.e. e3 >>>math.exp(3)

20.085536923187668

b. Function in random module:

random module has a function randint().

 randint() function generates the random integer values including start and end values.

 Syntax: randint(start, end)

 It has two parameters. Both parameters must have integer values.

Example:

import random

n=random.randint(3,7)

*The value of n will be 3 to 7.

3. USER DEFINED FUNCTIONS:

The syntax to define a function is:

def function-name (parameters) :

 #statement(s)

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 40

Where:

 Keyword def marks the start of function header.

 A function name to uniquely identify it. Function naming follows the same rules of

writing identifiers in Python.

 Parameters (arguments) through which we pass values to a function. They are optional.

 A colon (:) to mark the end of function header.

 One or more valid python statements that make up the function body. Statements must

have same indentation level.

 An optional return statement to return a value from the function.

Example:

def display(name):

 print("Hello " + name + " How are you?")

5.3 Function Parameters:

A functions has two types of parameters:

1. Formal Parameter: Formal parameters are written in the function prototype and function

header of the definition. Formal parameters are local variables which are assigned values from

the arguments when the function is called.

2. Actual Parameter: When a function is called, the values that are passed in the call are

called actual parameters. At the time of the call each actual parameter is assigned to the

corresponding formal parameter in the function definition.

Example :

def ADD(x, y): #Defining a function and x and y are formal parameters

 z=x+y

 print("Sum = ", z)

a=float(input("Enter first number: "))

b=float(input("Enter second number: "))

ADD(a,b) #Calling the function by passing actual parameters

In the above example, x and y are formal parameters. a and b are actual parameters.

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 41

5.4 Calling the function:

Once we have defined a function, we can call it from another function, program or even the

Python prompt. To call a function we simply type the function name with appropriate

parameters.

Syntax:

function-name(parameter)

Example:

ADD(10,20)

OUTPUT:

Sum = 30.0

How function works?

def functionName(parameter):

 … .. …

 … .. …

… .. …

… .. …

functionName(parameter)

… .. …

… .. …

The return statement:

The return statement is used to exit a function and go back to the place from where it was

called.

There are two types of functions according to return statement:

a. Function returning some value (non-void function)

b. Function not returning any value (void function)

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 42

a. Function returning some value (non-void function) :

Syntax:

return expression/value

Example-1: Function returning one value

def my_function(x):

 return 5 * x

 Example-2 Function returning multiple values:

 def sum(a,b,c):

 return a+5, b+4, c+7

 S=sum(2,3,4) # S will store the returned values as a tuple

 print(S)

OUTPUT:

(7, 7, 11)

Example-3: Storing the returned values separately:

def sum(a,b,c):

 return a+5, b+4, c+7

 s1, s2, s3=sum(2, 3, 4) # storing the values separately

 print(s1, s2, s3)

OUTPUT:

7 7 11

b. Function not returning any value (void function) : The function that performs some

operationsbut does not return any value, called void function.

def message():

 print("Hello")

m=message()

print(m)

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 43

OUTPUT:

Hello

None

5.5 Scope and Lifetime of variables:

Scope of a variable is the portion of a program where the variable is recognized. Parameters

and variables defined inside a function is not visible from outside. Hence, they have a local

scope.

There are two types of scope for variables:

1. Local Scope

2. Global Scope

1. Local Scope: Variable used inside the function. It can not be accessed outside the function.

In this scope, The lifetime of variables inside a function is as long as the function executes.

They are destroyed once we return from the function. Hence, a function does not remember the

value of a variable from its previous calls.

2. Global Scope: Variable can be accessed outside the function. In this scope, Lifetime of a

variable is the period throughout which the variable exits in the memory.

Example:

def my_func():

 x = 10

 print("Value inside function:",x)

x = 20

my_func()

print("Value outside function:",x)

OUTPUT:

Value inside function: 10

Value outside function: 20

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 44

Here, we can see that the value of x is 20 initially. Even though the function my_func()changed

the value of x to 10, it did not affect the value outside the function.

This is because the variable x inside the function is different (local to the function) from the

one outside. Although they have same names, they are two different variables with different

scope.

On the other hand, variables outside of the function are visible from inside. They have a global

scope.

We can read these values from inside the function but cannot change (write) them. In order to

modify the value of variables outside the function, they must be declared as global variables

using the keyword global.

5.6 RECURSION:

Definition: A function calls itself, is called recursion.

5.6.1Python program to find the factorial of a number using recursion:

Program:

def factorial(n):

 if n == 1:

 return n

 else:

 return n*factorial(n-1)

num=int(input("enter the number: "))

if num < 0:

 print("Sorry, factorial does not exist for negative numbers")

elif num = = 0:

 print("The factorial of 0 is 1")

else:

 print("The factorial of ",num," is ", factorial(num))

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 45

OUTPUT:

enter the number: 5

The factorial of 5 is 120

5.6.2 Python program to print the Fibonacci series using recursion:

Program:

def fibonacci(n):

 if n<=1:

 return n

 else:

 return(fibonacci(n-1)+fibonacci(n-2))

num=int(input("How many terms you want to display: "))

for i in range(num):

 print(fibonacci(i)," ", end=" ")

OUTPUT:

How many terms you want to display: 8

0 1 1 2 3 5 8 13

5.6.3 Binary Search using recursion:

Note: The given array or sequence must be sorted to perform binary search.

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 46

Program:

def Binary_Search(sequence, item, LB, UB):

 if LB>UB:

 return -5 # return any negative value

 mid=int((LB+UB)/2)

 if item==sequence[mid]:

 return mid

 elif item<sequence[mid]:

 UB=mid-1

 return Binary_Search(sequence, item, LB, UB)

 else:

 LB=mid+1

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 47

 return Binary_Search(sequence, item, LB, UB)

L=eval(input("Enter the elements in sorted order: "))

n=len(L)

element=int(input("Enter the element that you want to search :"))

found=Binary_Search(L,element,0,n-1)

if found>=0:

 print(element, "Found at the index : ",found)

else:

 print("Element not present in the list")

5.7 lambda Function:

lambda keyword, is used to create anonymous function which doesn’t have any name.

While normal functions are defined using the def keyword, in Python anonymous functions are

defined using the lambda keyword.

Syntax:

lambda arguments: expression

Lambda functions can have any number of arguments but only one expression. The expression

is evaluated and returned. Lambda functions can be used wherever function objects are

required.

Example:

value = lambda x: x * 4

print(value(6))

Output:

24

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 48

In the above program, lambda x: x * 4 is the lambda function. Here x is the argument and x *

4 is the expression that gets evaluated and returned.

Programs related to Functions in Python topic:

1. Write a python program to sum the sequence given below. Take the input n from the

user.

1 +
1

1!
+
1

2!
+
1

3!
+ ⋯+

1

𝑛!

Solution:

def fact(x):

 j=1

 res=1

 while j<=x:

 res=res*j

 j=j+1

 return res

n=int(input("enter the number : "))

i=1

sum=1

while i<=n:

 f=fact(i)

 sum=sum+1/f

 i+=1

print(sum)

2. Write a program to compute GCD and LCM of two numbers

def gcd(x,y):

 while(y):

 x, y = y, x % y

 return x

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 49

def lcm(x, y):

 lcm = (x*y)//gcd(x,y)

 return lcm

num1 = int(input("Enter first number: "))

num2 = int(input("Enter second number: "))

print("The L.C.M. of", num1,"and", num2,"is", lcm(num1, num2))

print("The G.C.D. of", num1,"and", num2,"is", gcd(num1, num2))

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 50

CHAPTER-6

STRING IN PYTHON

6.1 Introduction:

Definition: Sequence of characters enclosed in single, double or triple quotation marks.

Basics of String:

 Strings are immutable in python. It means it is unchangeable. At the same memory

address, the new value cannot be stored.

 Each character has its index or can be accessed using its index.

 String in python has two-way index for each location. (0, 1, 2, ……. In the forward

direction and -1, -2, -3, …….. in the backward direction.)

Example:

0 1 2 3 4 5 6 7

k e n d r i y a
-8 -7 -6 -5 -4 -3 -2 -1

 The index of string in forward direction starts from 0 and in backward direction starts

from -1.

 The size of string is total number of characters present in the string. (If there are n

characters in the string, then last index in forward direction would be n-1 and last index

in backward direction would be –n.)

 String are stored each character in contiguous location.

 The character assignment is not supported in string because strings are immutable.

Example :

str = “kendriya”

str[2] = ‘y’ # it is invalid. Individual letter assignment not allowed in python

6.2 Traversing a String:

Access the elements of string, one character at a time.

str = “kendriya”

for ch in str :

 print(ch, end= ‘ ‘)

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 51

Output:

kendriya

6.3 String Operators:

 a. Basic Operators (+, *)

 b. Membership Operators (in, not in)

 c. Comparison Operators (==, !=, <, <=, >, >=)

a. Basic Operators: There are two basic operators of strings:

 i. String concatenation Operator (+)

 ii. String repetition Operator (*)

i. String concatenation Operator: The + operator creates a new string by joining the two

operand strings.

Example:

>>>”Hello”+”Python”

‘HelloPython’

>>>’2’+’7’

’27’

>>>”Python”+”3.0”

‘Python3.0’

Note: You cannot concate numbers and strings as operands with + operator.

Example:

>>>7+’4’ # unsupported operand type(s) for +: 'int' and 'str'

It is invalid and generates an error.

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 52

ii. String repetition Operator: It is also known as String replication operator. It requires

two types of operands- a string and an integer number.

Example:

>>>”you” * 3

‘youyouyou’

>>>3*”you”

‘youyouyou’

Note:You cannot have strings as n=both the operands with * operator.

Example:

>>>”you” * “you” # can't multiply sequence by non-int of type 'str'

It is invalid and generates an error.

b. Membership Operators:

in – Returns True if a character or a substring exists in the given string; otherwise False

not in - Returns True if a character or a substring does not exist in the given string; otherwise False

Example:

>>> "ken" in "Kendriya Vidyalaya"

False

>>> "Ken" in "Kendriya Vidyalaya"

True

>>>"ya V" in "Kendriya Vidyalaya"

True

>>>"8765" not in "9876543"

False

c. Comparison Operators: These operators compare two strings character by character

according to their ASCII value.

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 53

Characters ASCII (Ordinal) Value

‘0’ to ‘9’ 48 to 57

‘A’ to ‘Z’ 65 to 90

‘a’ to ‘z’ 97 to 122

Example:

>>> 'abc'>'abcD'

False

>>> 'ABC'<'abc'

True

>>> 'abcd'>'aBcD'

True

>>> 'aBcD'<='abCd'

True

6.4 Finding the Ordinal or Unicode value of a character:

Function Description

ord(<character>) Returns ordinal value of a character

chr(<value>) Returns the corresponding character

Example:

>>> ord('b')

98

>>> chr(65)

'A'

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 54

Program: Write a program to display ASCII code of a character and vice versa.

var=True

while var:

 choice=int(input("Press-1 to find the ordinal value \n Press-2 to find a character of a value\n"))

 if choice==1:

 ch=input("Enter a character : ")

 print(ord(ch))

 elif choice==2:

 val=int(input("Enter an integer value: "))

 print(chr(val))

 else:

 print("You entered wrong choice")

 print("Do you want to continue? Y/N")

 option=input()

 if option=='y' or option=='Y':

 var=True

 else:

 var=False

6.5 Slice operator with Strings:

The slice operator slices a string using a range of indices.

Syntax:

string-name[start:end]

where start and end are integer indices. It returns a string from the index start to end-1.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

d a t a s t r u c t u r e
-14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 55

Example:

>>> str="data structure"

>>> str[0:14]

'data structure'

>>> str[0:6]

'data s'

>>> str[2:7]

'ta st'

>>> str[-13:-6]

'ata str'

>>> str[-5:-11]

' ' #returns empty string

>>> str[:14] # Missing index before colon is considered as 0.

'data structure'

>>> str[0:] # Missing index after colon is considered as 14. (length of string)

'data structure'

>>> str[7:]

'ructure'

>>> str[4:]+str[:4]

' structuredata'

>>> str[:4]+str[4:] #for any index str[:n]+str[n:] returns original string

'data structure'

>>> str[8:]+str[:8]

'ucturedata str'

>>> str[8:], str[:8]

('ucture', 'data str')

Slice operator with step index:

Slice operator with strings may have third index. Which is known as step. It is optional.

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 56

Syntax:

string-name[start:end:step]

Example:

>>> str="data structure"

>>> str[2:9:2]

't tu'

>>> str[-11:-3:3]

'atc'

>>> str[: : -1] # reverses a string

'erutcurts atad'

Interesting Fact: Index out of bounds causes error with strings but slicing a string outside the

index does not cause an error.

Example:

>>>str[14]

IndexError: string index out of range

>>> str[14:20] # both indices are outside the bounds

' ' # returns empty string

>>> str[10:16]

'ture'

Reason: When you use an index, you are accessing a particular character of a string, thus the

index must be valid and out of bounds index causes an error as there is no character to return

from the given index.

But slicing always returns a substring or empty string, which is valid sequence.

6.6 Built-in functions of string:

Example:

str=”data structure”

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 57

s1= “hello365”

s2= “python”

s3 = ‘4567’

s4 = ‘ ‘

s5= ‘comp34%@’

S. No. Function Description Example

1 len() Returns the length of a string >>>print(len(str))

14

2 capitalize() Returns a string with its first character

capitalized.

>>> str.capitalize()

'Data structure'

3 find(sub,start,end) Returns the lowest index in the string where the

substring sub is found within the slice range.

Returns -1 if sub is not found.

>>> str.find("ruct",5,13)

7

>>> str.find("ruct",8,13)

-1

4 isalnum() Returns True if the characters in the string are

alphabets or numbers. False otherwise

>>>s1.isalnum()

True

>>>s2.isalnum()

True

>>>s3.isalnum()

True

>>>s4.isalnum()

False

>>>s5.isalnum()

False

5 isalpha() Returns True if all characters in the string are

alphabetic. False otherwise.

>>>s1.isalpha()

False

>>>s2.isalpha()

True

>>>s3.isalpha()

False

>>>s4.isalpha()

False

>>>s5.isalpha()

False

6 isdigit() Returns True if all the characters in the string are

digits. False otherwise.

>>>s1.isdigit()

False

>>>s2.isdigit()

False

>>>s3.isdigit()

True

>>>s4.isdigit()

False

>>>s5.isdigit()

False

7 islower() Returns True if all the characters in the string are

lowercase. False otherwise.

>>> s1.islower()

True

>>> s2.islower()

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 58

True

>>> s3.islower()

False

>>> s4.islower()

False

>>> s5.islower()

True

8 isupper() Returns True if all the characters in the string are

uppercase. False otherwise.

>>> s1.isupper()

False

>>> s2.isupper()

False

>>> s3.isupper()

False

>>> s4.isupper()

False

>>> s5.isupper()

False

9 isspace() Returns True if there are only whitespace

characters in the string. False otherwise.

>>> " ".isspace()

True

>>> "".isspace()

False

10 lower() Converts a string in lowercase characters. >>> "HeLlo".lower()

'hello'

11 upper() Converts a string in uppercase characters. >>> "hello".upper()

'HELLO'

12 lstrip() Returns a string after removing the leading

characters. (Left side).

if used without any argument, it removes the

leading whitespaces.

>>> str="data structure"

>>> str.lstrip('dat')

' structure'

>>> str.lstrip('data')

' structure'

>>> str.lstrip('at')

'data structure'

>>> str.lstrip('adt')

' structure'

>>> str.lstrip('tad')

' structure'

13 rstrip() Returns a string after removing the trailing

characters. (Right side).

if used without any argument, it removes the

trailing whitespaces.

>>> str.rstrip('eur')

'data struct'

>>> str.rstrip('rut')

'data structure'

>>> str.rstrip('tucers')

'data '

14 split() breaks a string into words and creates a list out of it >>> str="Data Structure"

>>> str.split()

['Data', 'Structure']

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 59

Programs related to Strings:

1. Write a program that takes a string with multiple words and then capitalize the first

letter of each word and forms a new string out of it.

Solution:

s1=input("Enter a string : ")

length=len(s1)

a=0

end=length

s2="" #empty string

while a<length:

 if a==0:

 s2=s2+s1[0].upper()

 a+=1

 elif (s1[a]==' 'and s1[a+1]!=''):

 s2=s2+s1[a]

 s2=s2+s1[a+1].upper()

 a+=2

 else:

 s2=s2+s1[a]

 a+=1

print("Original string : ", s1)

print("Capitalized wrds string: ", s2)

2. Write a program that reads a string and checks whether it is a palindrome string or

not.

str=input("Enter a string : ")

n=len(str)

mid=n//2

rev=-1

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 60

for i in range(mid):

 if str[i]==str[rev]:

 i=i+1

 rev=rev-1

 else:

 print("String is not palindrome")

 break

else:

 print("String is palindrome")

3. Write a program to convert lowercase alphabet into uppercase and vice versa.

choice=int(input("Press-1 to convert in lowercase\n Press-2 to convert in uppercase\n"))

str=input("Enter a string: ")

if choice==1:

 s1=str.lower()

 print(s1)

elif choice==2:

 s1=str.upper()

 print(s1)

else:

 print("Invalid choice entered")

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 61

CHAPTER-7

LIST IN PYTHON

7.1 Introduction:

 List is a collection of elements which is ordered and changeable (mutable).

 Allows duplicate values.

 A list contains items separated by commas and enclosed within square brackets ([]).

 All items belonging to a list can be of different data type.

 The values stored in a list can be accessed using the slice operator ([] and [:]) with

indexes starting at 0 in the beginning of the list.

Difference between list and string:

List String

Mutable Immutable

Element can be assigned at specified

index

Element/character cannot be

assigned at specified index.
Example:

>>>L=[7,4,8,9]

>>>L[2]=6 #valid

Example:

>>>str= “python”

>>>str[2]= ‘p’ #error

7.2 Creating a list:

To create a list enclose the elements of the list within square brackets and separate the

elements by commas.

Syntax:

list-name= [item-1, item-2, …….., item-n]

Example:

mylist = ["apple", "banana", "cherry"] # a list with three items

L = [] # an empty list

7.2.1 Creating a list using list() Constructor:

o It is also possible to use the list() constructor to make a list.

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 62

mylist = list(("apple", "banana", "cherry")) #note the double round-brackets

print(mylist)

L=list() # creating empty list

 7.2.2 Nested Lists:

 >>> L=[23,'w',78.2, [2,4,7],[8,16]]

>>> L

[23, 'w', 78.2, [2, 4, 7], [8, 16]]

7.2.3 Creating a list by taking input from the user:

>>> List=list(input("enter the elements: "))

enter the elements: hello python

>>> List

['h', 'e', 'l', 'l', 'o', ' ', 'p', 'y', 't', 'h', 'o', 'n']

>>> L1=list(input("enter the elements: "))

enter the elements: 678546

>>> L1

['6', '7', '8', '5', '4', '6'] # it treats elements as the characters though we entered digits

To overcome the above problem, we can use eval() method, which identifies the

data type and evaluate them automatically.

>>> L1=eval(input("enter the elements: "))

enter the elements: 654786

>>> L1

654786 # it is an integer, not a list

>>> L2=eval(input("enter the elements: "))

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 63

enter the elements: [6,7,8,5,4,3] # for list, you must enter the [] bracket

>>> L2

[6, 7, 8, 5, 4, 3]

Note: With eval() method, If you enter elements without square bracket[], it will be

considered as a tuple.

>>> L1=eval(input("enter the elements: "))

enter the elements: 7,65,89,6,3,4

>>> L1

(7, 65, 89, 6, 3, 4) #tuple

7.3 Accessing lists:

 The values stored in a list can be accessed using the slice operator ([] and [:]) with

indexes.

 List-name[start:end] will give you elements between indices start to end-1.

 The first item in the list has the index zero (0).

Example:

>>> number=[12,56,87,45,23,97,56,27]

0 1 2 3 4 5 6 7

12 56 87 45 23 97 56 27

-8 -7 -6 -5 -4 -3 -2 -1

>>> number[2]

87

>>> number[-1]

27

>>> number[-8]

12

>>> number[8]

IndexError: list index out of range

>>> number[5]=55 #Assigning a value at the specified index

Forward Index

Backward Index

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 64

>>> number

[12, 56, 87, 45, 23, 55, 56, 27]

7.4 Traversing a LIST:

 Traversing means accessing and processing each element.

Method-1:

>>> day=list(input("Enter elements :"))

Enter elements : sunday

>>> for d in day:

 print(d)

Output:

s

u

n

d

a

y

Method-2

>>> day=list(input("Enter elements :"))

Enter elements : wednesday

>>> for i in range(len(day)):

 print(day[i])

Output:

w

e

d

n

e

s

d

a

y

7.5 List Operators:

 Joining operator +

 Repetition operator *

 Slice operator [:]

 Comparison Operator <, <=, >, >=, ==, !=

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 65

 Joining Operator: It joins two or more lists.

Example:

>>> L1=['a',56,7.8]

>>> L2=['b','&',6]

>>> L3=[67,'f','p']

>>> L1+L2+L3

['a', 56, 7.8, 'b', '&', 6, 67, 'f', 'p']

 Repetition Operator: It replicates a list specified number of times.

Example:

>>> L1*3

['a', 56, 7.8, 'a', 56, 7.8, 'a', 56, 7.8]

>>> 3*L1

['a', 56, 7.8, 'a', 56, 7.8, 'a', 56, 7.8]

 Slice Operator:

List-name[start:end] will give you elements between indices start to end-1.

>>> number=[12,56,87,45,23,97,56,27]

>>> number[2:-2]

[87, 45, 23, 97]

>>> number[4:20]

[23, 97, 56, 27]

>>> number[-1:-6]

[]

>>> number[-6:-1]

[87, 45, 23, 97, 56]

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 66

>>> number[0:len(number)]

[12, 56, 87, 45, 23, 97, 56, 27]

List-name[start:end:step] will give you elements between indices start to end-1 with

skipping elements as per the value of step.

>>> number[1:6:2]

[56, 45, 97]

>>> number[: : -1]

[27, 56, 97, 23, 45, 87, 56, 12] #reverses the list

List modification using slice operator:

>>> number=[12,56,87,45,23,97,56,27]

>>> number[2:4]=["hello","python"]

>>> number

[12, 56, 'hello', 'python', 23, 97, 56, 27]

>>> number[2:4]=["computer"]

>>> number

[12, 56, 'computer', 23, 97, 56, 27]

Note: The values being assigned must be a sequence (list, tuple or string)

Example:

>>> number=[12,56,87,45,23,97,56,27]

>>> number=[12,56,87,45,23,97,56,27]

>>> number[2:3]=78 # 78 is a number, not a sequence

TypeError: can only assign an iterable

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 67

 Comparison Operators:

o Compares two lists

o Python internally compares individual elements of lists in lexicographical

order.

o It compares the each corresponding element must compare equal and two

sequences must be of the same type.

o For non-equal comparison as soon as it gets a result in terms of True/False,

from corresponding elements’ comparison. If Corresponding elements are

equal, it goes to the next element and so on, until it finds elements that differ.

Example:

>>>L1, L2 = [7, 6, 9], [7, 6, 9]

>>>L3 = [7, [6, 9]]

For Equal Comparison:

Comparison Result Reason

>>>L1==L2 True Corresponding elements have same value and same

type

>>>L1==L3 False Corresponding values are not same

For Non-equal comparison:

Comparison Result Reason

>>> L1>L2 False All elements are equal

>>> L2>L3 TypeError: '>' not

supported between

instances of 'int' and

'list'

in L2, element at the index 1 is int type

and in L3 element at the index 1 is list

type

>>>[3,4,7,8]<[5,1] True 3<5 is True

>>>[3,4,7,8]<[3,4,9,2] True First two elements are same so move

to next element and 7<9 is True

>>>[3,4,7,8]<[3,4,9,11] True 7<9 is True

>>>[3,4,7,8]<[3,4,7,5] False 8<5 is False

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 68

List Methods:

Consider a list:

company=["IBM","HCL","Wipro"]

S.

No.
Function

Name
Description Example

1 append() To add element to the list

at the end.

Syntax:
list-name.append (element)

>>> company.append("Google")

>>> company

['IBM', 'HCL', 'Wipro', 'Google']

Error:

>>>company.append("infosys","microsoft") # takes exactly one element

TypeError: append() takes exactly one argument (2 given)

2 extend() Add a list, to the end of

the current list.

Syntax:

list-name.extend(list)

>>>company=["IBM","HCL","Wipro"]

>>> desktop=["dell","HP"]

>>> company.extend(desktop)

>>> company

['IBM', 'HCL', 'Wipro', 'dell', 'HP']

Error:

>>>company.extend("dell","HP") #takes only a list as argument

TypeError: extend() takes exactly one argument (2 given)

3. len() Find the length of the list.

Syntax:

len(list-name)

>>>company=["IBM","HCL","Wipro"]

>>> len(company)

3

>>> L=[3,6,[5,4]]

>>> len(L)

3

4 index() Returns the index of the

first element with the

specified value.

Syntax:

list-name.index(element)

>>> company = ["IBM", "HCL", "Wipro",

"HCL","Wipro"]

>>> company.index("Wipro")

2

Error:

>>> company.index("WIPRO") # Python is case-sensitive language

ValueError: 'WIPRO' is not in list

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 69

>>> company.index(2) # Write the element, not index

ValueError: 2 is not in list

5 insert() Adds an element at the

specified position.

Syntax:

list.insert(index, element)

>>>company=["IBM","HCL","Wipro"]

>>> company.insert(2,"Apple")

>>> company

['IBM', 'HCL', 'Apple', 'Wipro']

>>> company.insert(16,"Microsoft")

>>> company

['IBM', 'HCL', 'Apple', 'Wipro',

'Microsoft']

>>> company.insert(-16,"TCS")

>>> company

['TCS', 'IBM', 'HCL', 'Apple', 'Wipro',

'Microsoft']

6 count() Return the number of

times the value appears.

Syntax:

list-name.count(element)

>>> company = ["IBM", "HCL",

"Wipro", "HCL","Wipro"]

>>> company.count("HCL")

2

>>> company.count("TCS")

0

7 remove() To remove an element

from the list.

Syntax:

list-name.remove(element)

>>> company = ["IBM", "HCL",

"Wipro", "HCL","Wipro"]

>>> company.remove("Wipro")

>>> company

['IBM', 'HCL', 'HCL', 'Wipro']

Error:

>>> company.remove("Yahoo")

ValueError: list.remove(x): x not in list

8 clear() Removes all the elements

from list.

Syntax:

list-name.clear()

>>> company=["IBM","HCL", "Wipro"]

>>> company.clear()

>>> company

[]

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 70

9 pop() Removes the element at

the specified position and

returns the deleted

element.

Syntax:

list-name.pop(index)

The index argument is

optional. If no index is

specified, pop() removes and

returns the last item in the list.

>>>company=["IBM","HCL", "Wipro"]

>>> company.pop(1)

'HCL'

>>> company

['IBM', 'Wipro']

>>> company.pop()

'Wipro'

Error:

>>>L=[]

>>>L.pop()

IndexError: pop from empty list

10 copy() Returns a copy of the list.

Syntax:

list-name.copy()

>>>company=["IBM","HCL", "Wipro"]

>>> L=company.copy()

>>> L

['IBM', 'HCL', 'Wipro']

11 reverse() Reverses the order of the

list.

Syntax:

list-name.reverse()

Takes no argument,

returns no list.

>>>company=["IBM","HCL", "Wipro"]

>>> company.reverse()

>>> company

['Wipro', 'HCL', 'IBM']

12. sort() Sorts the list. By default

in ascending order.

Syntax:

list-name.sort()

>>>company=["IBM","HCL", "Wipro"]

>>>company.sort()

>>> company

['HCL', 'IBM', 'Wipro']

To sort a list in descending order:

>>>company=["IBM","HCL", "Wipro"]

>>> company.sort(reverse=True)

>>> company

['Wipro', 'IBM', 'HCL']

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 71

Deleting the elements from the list using del statement:

Syntax:

del list-name[index] # to remove element at specified index

del list-name[start:end] # to remove elements in list slice

Example:

>>> L=[10,20,30,40,50]

>>> del L[2] # delete the element at the index 2

>>> L

[10, 20, 40, 50]

>>> L= [10,20,30,40,50]

>>> del L[1:3] # deletes elements of list from index 1 to 2.

>>> L

[10, 40, 50]

>>> del L # deletes all elements and the list object too.

>>> L

NameError: name 'L' is not defined

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 72

Difference between del, remove(), pop(), clear():

S.

No.
del remove() pop() clear()

1 Statement Function Function Function

2

Deletes a single element

or a list slice or complete

list.

Removes the first

matching item

from the list.

Removes an

individual item and

returns it.

Removes all the

elements from list.

3

Removes all elements

and deletes list object

too.

Removes all

elements but list

object still exists.

Difference between append(), extend() and insert() :

S.

No.
append() extend() insert()

1
Adds single element in the end

of the list.

Add a list in the end of

the another list

Adds an element at the

specified position.

(Anywhere in the list)

2 Takes one element as argument
Takes one list as

argument

Takes two arguments,

position and element.

3
The length of the list will

increase by 1.

The length of the list

will increase by the

length of inserted list.

The length of the list

will increase by 1.

ACCESSING ELEMENTS OF NESTED LISTS:

Example:

>>> L=["Python", "is", "a", ["modern", "programming"], "language", "that", "we", "use"]

>>> L[0][0]

'P'

>>> L[3][0][2]

'd'

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 73

>>> L[3:4][0]

['modern', 'programming']

>>> L[3:4][0][1]

'programming'

>>> L[3:4][0][1][3]

'g'

>>> L[0:9][0]

'Python'

>>> L[0:9][0][3]

'h'

>>> L[3:4][1]

IndexError: list index out of range

Programs related to lists in python:

Program-1 Write a program to find the minimum and maximum number in a list.

L=eval(input("Enter the elements: "))

n=len(L)

min=L[0]

max=L[0]

for i in range(n):

 if min>L[i]:

 min=L[i]

 if max<L[i]:

 max=L[i]

print("The minimum number in the list is : ", min)

print("The maximum number in the list is : ", max)

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 74

 Program-2 Find the second largest number in a list.

L=eval(input("Enter the elements: "))

n=len(L)

max=second=L[0]

for i in range(n):

 if max<L[i]>second:

 max=L[i]

 seond=max

print("The second largest number in the list is : ", second)

Program-3: Program to search an element in a list. (Linear Search).

L=eval(input("Enter the elements: "))

n=len(L)

item=eval(input("Enter the element that you want to search : "))

for i in range(n):

 if L[i]==item:

 print("Element found at the position :", i+1)

 break

else:

 print("Element not Found")

Output:

Enter the elements: 56,78,98,23,11,77,44,23,65

Enter the element that you want to search : 23

Element found at the position : 4

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 75

CHAPTER-8

TUPLE IN PYTHON

8.1 INTRODUCTION:

 Tuple is a collection of elements which is ordered and unchangeable (Immutable).

Immutable means you cannot change elements of a tuple in place.

 Allows duplicate members.

 Consists the values of any type, separated by comma.

 Tuples are enclosed within parentheses ().

 Cannot remove the element from a tuple.

8.2 Creating Tuple:

 Syntax:

 tuple-name = () # empty tuple

 tuple-name = (value-1, value-2, …….. , value-n)

Example:

 >>> T=(23, 7.8, 64.6, 'h', 'say')

>>> T

(23, 7.8, 64.6, 'h', 'say')

8.2.1 Creating a tuple with single element:

>>> T=(3) #With a single element without comma, it is a value only, not a tuple

>>> T

3

>>> T= (3,) # to construct a tuple, add a comma after the single element

>>> T

(3,)

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 76

>>> T1=3, # It also creates a tuple with single element

>>> T1

(3,)

8.2.2 Creating a tuple using tuple() constructor:

o It is also possible to use the tuple() constructor to create a tuple.

>>>T=tuple() # empty tuple

>>> T=tuple((45,3.9, 'k',22)) #note the double round-brackets

>>> T

(45, 3.9, 'k', 22)

>>> T2=tuple('hello') # for single round-bracket, the argument must be of sequence type

>>> T2

('h', 'e', 'l', 'l', 'o')

>>> T3=('hello','python')

>>> T3

('hello', 'python')

 8.2.3 Nested Tuples:

 >>> T=(5,10,(4,8))

>>> T

(5, 10, (4, 8))

8.2.4 Creating a tuple by taking input from the user:

>>> T=tuple(input("enter the elements: "))

enter the elements: hello python

>>> T

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 77

('h', 'e', 'l', 'l', 'o', ' ', 'p', 'y', 't', 'h', 'o', 'n')

>>> T1=tuple(input("enter the elements: "))

enter the elements: 45678

>>> T1

('4', '5', '6', '7', '8') # it treats elements as the characters though we entered digits

To overcome the above problem, we can use eval() method, which identifies the

data type and evaluate them automatically.

>>> T1=eval(input("enter the elements: "))

enter the elements: 56789

>>> T1

56789 # it is not a list, it is an integer value

>>> type(T1)

<class 'int'>

>>> T2=eval(input("enter the elements: "))

enter the elements: (1,2,3,4,5) # Parenthesis is optional

>>> T2

(1, 2, 3, 4, 5)

>>> T3=eval(input("enter the elements: "))

enter the elements: 6, 7, 3, 23, [45,11] # list as an element of tuple

>>> T3

(6, 7, 3, 23, [45, 11])

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 78

 8.3 Accessing Tuples:

Tuples are very much similar to lists. Like lists, tuple elements are also indexed.

Forward indexing as 0,1,2,3,4……… and backward indexing as -1,-2,-3,-4,………

 The values stored in a tuple can be accessed using the slice operator ([] and [:]) with

indexes.

 tuple-name[start:end] will give you elements between indices start to end-1.

 The first item in the tuple has the index zero (0).

Example:

>>> alpha=('q','w','e','r','t','y')

0 1 2 3 4 5

q w e r t y

-6 -5 -4 -3 -2 -1

>>> alpha[5]

'y'

>>> alpha[-4]

'e'

>>> alpha[46]

IndexError: tuple index out of range

>>> alpha[2]='b' #can’t change value in tuple, the value will remain unchanged

TypeError: 'tuple' object does not support item assignment

8.3.1 Difference between List and Tuple:

S. No. List Tuple

1 Ordered and changeable (Mutable) Ordered but unchangeable (Immutable)

2 Lists are enclosed in brackets. [] Tuples are enclosed in parentheses. ()

3 Element can be removed. Element can’t be removed.

Forward Index

Backward Index

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 79

8.4 Traversing a Tuple:

 Syntax:

 for <variable> in tuple-name:

 statement

Example:

Method-1

>>> alpha=('q','w','e','r','t','y')

>>> for i in alpha:

 print(i)

Output:

q

w

e

r

t

y

Method-2

>>> for i in range(0, len(alpha)):

 print(alpha[i])

Output:

q

w

e

r

t

y

8.5 Tuple Operations:

 Joining operator +

 Repetition operator *

 Slice operator [:]

 Comparison Operator <, <=, >, >=, ==, !=

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 80

 Joining Operator: It joins two or more tuples.

Example:

>>> T1 = (25,50,75)

>>> T2 = (5,10,15)

>>> T1+T2

(25, 50, 75, 5, 10, 15)

>>> T1 + (34)

TypeError: can only concatenate tuple (not "int") to tuple

>>> T1 + (34,)

(25, 50, 75, 34)

 Repetition Operator: It replicates a tuple, specified number of times.

Example:

>>> T1*2

(25, 50, 75, 25, 50, 75)

>>> T2=(10,20,30,40)

>>> T2[2:4]*3

(30, 40, 30, 40, 30, 40)

 Slice Operator:

tuple-name[start:end] will give you elements between indices start to end-1.

>>>alpha=('q','w','e','r','t','y')

>>> alpha[1:-3]

('w', 'e')

>>> alpha[3:65]

('r', 't', 'y')

>>> alpha[-1:-5]

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 81

()

>>> alpha[-5:-1]

('w', 'e', 'r', 't')

List-name[start:end:step] will give you elements between indices start to end-1 with

skipping elements as per the value of step.

>>> alpha[1:5:2]

('w', 'r')

>>> alpha[: : -1]

('y', 't', 'r', 'e', 'w', 'q') #reverses the tuple

 Comparison Operators:

o Compare two tuples

o Python internally compares individual elements of tuples in lexicographical

order.

o It compares the each corresponding element must compare equal and two

sequences must be of the same type.

o For non-equal comparison as soon as it gets a result in terms of True/False,

from corresponding elements’ comparison. If Corresponding elements are

equal, it goes to the next element and so on, until it finds elements that differ.

Example:

>>> T1 = (9, 16, 7)

>>> T2 = (9, 16, 7)

>>> T3 = ('9','16','7')

>>> T1 = = T2

True

>>> T1==T3

False

>>> T4 = (9.0, 16.0, 7.0)

>>> T1==T4

True

>>> T1<T2

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 82

False

>>> T1<=T2

True

8.6 Tuple Methods:

Consider a tuple:

subject=("Hindi","English","Maths","Physics")

S.

No.
Function

Name
Description Example

1 len() Find the length of a tuple.

Syntax:
len (tuple-name)

>>>subject=("Hindi","English","Maths","Physics”)

>>> len(subject)

4

2 max() Returns the largest value

from a tuple.

Syntax:

max(tuple-name)

>>> max(subject)

'Physics'

Error: If the tuple contains values of different data types, then it will give an error

because mixed data type comparison is not possible.

>>> subject = (15, "English", "Maths", "Physics", 48.2)

>>> max(subject)
TypeError: '>' not supported between instances of 'str' and 'int'

3. min() Returns the smallest

value from a tuple.

Syntax:

min(tuple-name)

>>>subject=("Hindi","English","Maths","Physics")

>>> min(subject)

'English'

Error: If the tuple contains values of different data types, then it will give an error

because mixed data type comparison is not possible.

>>> subject = (15, "English", "Maths", "Physics", 48.2)

>>> min(subject)
TypeError: '>' not supported between instances of 'str' and 'int'

4 index() Returns the index of the

first element with the

specified value.

Syntax:

>>>subject=("Hindi","English","Maths","Physics")

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 83

tuple-

name.index(element)

>>> subject.index("Maths")

2

5 count() Return the number of

times the value appears.

Syntax:

tuple-

name.count(element)

>>> subject.count("English")

1

8.7 Tuple Packing and Unpacking:

Tuple Packing: Creating a tuple from set of values.

Example:

>>> T=(45,78,22)

>>> T

(45, 78, 22)

Tuple Unpacking : Creating individual values from the elements of tuple.

Example:

>>> a, b, c=T

>>> a

45

>>> b

78

>>> c

22

Note: Tuple unpacking requires that the number of variable on the left side must be equal

to the length of the tuple.

8.8 Delete a tuple:

The del statement is used to delete elements and objects but as you know that tuples are

immutable, which also means that individual element of a tuple cannot be deleted.

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 84

Example:

>> T=(2,4,6,8,10,12,14)

>>> del T[3]

TypeError: 'tuple' object doesn't support item deletion

But you can delete a complete tuple with del statement as:

Example:

>>> T=(2,4,6,8,10,12,14)

>>> del T

>>> T

NameError: name 'T' is not defined

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 85

CHAPTER-9

DICTIONARY IN PYTHON

9.1 INTRODUCTION:

 Dictionary is a collection of elements which is unordered, changeable and indexed.

 Dictionary has keys and values.

 Doesn’t have index for values. Keys work as indexes.

 Dictionary doesn’t have duplicate member means no duplicate key.

 Dictionaries are enclosed by curly braces { }

 The key-value pairs are separated by commas (,)

 A dictionary key can be almost any Python type, but are usually numbers or strings.

 Values can be assigned and accessed using square brackets [].

9.2 CREATING A DICTIONARY:

Syntax:

dictionary-name = {key1:value, key2:value, key3:value, keyn:value}

Example:

>>> marks = { "physics" : 75, "Chemistry" : 78, "Maths" : 81, "CS":78 }

>>> marks

{'physics': 75, 'Chemistry': 78, 'Maths': 81, 'CS': 78}

>>> D = { } #Empty dictionary

>>> D

{ }

>>> marks = { "physics" : 75, "Chemistry" : 78, "Maths" : 81, "CS":78 }

{'Maths': 81, 'Chemistry': 78, 'Physics': 75, 'CS': 78} # there is no guarantee that

 # elements in dictionary can be accessed as per specific order.

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 86

Note: Keys of a dictionary must be of immutable types, such as string, number, tuple.

Example:

>>> D1={[2,3]:"hello"}

TypeError: unhashable type: 'list'

Creating a dictionary using dict() Constructor:

A. use the dict() constructor with single parentheses:

>>> marks=dict(Physics=75,Chemistry=78,Maths=81,CS=78)

>>> marks

{'Physics': 75, 'Chemistry': 78, 'Maths': 81, 'CS': 78}

 In the above case the keys are not enclosed in quotes and equal sign is used

for assignment rather than colon.

B. dict () constructor using parentheses and curly braces:

>>> marks=dict({"Physics":75,"Chemistry":78,"Maths":81, "CS":78})

>>> marks

{'Physics': 75, 'Chemistry': 78, 'Maths': 81, 'CS': 78}

 C. dict() constructor using keys and values separately:

>>> marks=dict(zip(("Physics","Chemistry","Maths","CS"),(75,78,81,78)))

>>> marks

{'Physics': 75, 'Chemistry': 78, 'Maths': 81, 'CS': 78}

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 87

In this case the keys and values are enclosed separately in parentheses and are given as

argument to the zip() function. zip() function clubs first key with first value and so on.

D. dict() constructor using key-value pairs separately:

Example-a

>>> marks=dict([['Physics',75],['Chemistry',78],['Maths',81],['CS',78]])

list as argument passed to dict() constructor contains list type elements.

>>> marks

{'Physics': 75, 'Chemistry': 78, 'Maths': 81, 'CS': 78}

Example-b

>>> marks=dict((['Physics',75],['Chemistry',78],['Maths',81],['CS',78]))

tuple as argument passed to dict() constructor contains list type elements

>>> marks

{'Physics': 75, 'Chemistry': 78, 'Maths': 81, 'CS': 78}

Example-c

>>> marks=dict((('Physics',75),('Chemistry',78),('Maths',81),('CS',78)))

tuple as argument to dict() constructor and contains tuple type elements

>>> marks

{'Physics': 75, 'Chemistry': 78, 'Maths': 81, 'CS': 78}

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 88

9.3 ACCESSING ELEMENTS OF A DICTIONARY:

Syntax:

dictionary-name[key]

Example:

>>> marks = { "physics" : 75, "Chemistry" : 78, "Maths" : 81, "CS":78 }

>>> marks["Maths"]

81

>>> marks["English"] #Access a key that doesn’t exist causes an error

KeyError: 'English'

>>> marks.keys() #To access all keys in one go

dict_keys(['physics', 'Chemistry', 'Maths', 'CS'])

>>> marks.values() # To access all values in one go

dict_values([75, 78, 81, 78])

Lookup : A dictionary operation that takes a key and finds the corresponding value, is

 called lookup.

9.4 TRAVERSING A DICTIONARY:

Syntax:

for <variable-name> in <dictionary-name>:

 statement

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 89

Example:

>>> for i in marks:

 print(i, ": ", marks[i])

OUTPUT:

physics : 75

Chemistry : 78

Maths : 81

CS : 78

9.5 CHANGE AND ADD THE VALUE IN A DICTIONARY:

Syntax:

dictionary-name[key]=value

Example:

 >>> marks = { "physics" : 75, "Chemistry" : 78, "Maths" : 81, "CS":78 }

>>> marks

{'physics': 75, 'Chemistry': 78, 'Maths': 81, 'CS': 78}

>>> marks['CS']=84 #Changing a value

>>> marks

{'physics': 75, 'Chemistry': 78, 'Maths': 81, 'CS': 84}

>>> marks['English']=89 # Adding a value

>>> marks

{'physics': 75, 'Chemistry': 78, 'Maths': 81, 'CS': 84, 'English': 89}

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 90

9.6 DELETE ELEMENTS FROM A DICTIONARY:

There are two methods to delete elements from a dictionary:

(i) using del statement

(ii) using pop() method

(i) Using del statement:

 Syntax:

 del dictionary-name[key]

 Example:

>>> marks

{'physics': 75, 'Chemistry': 78, 'Maths': 81, 'CS': 84, 'English': 89}

>>> del marks['English']

>>> marks

{'physics': 75, 'Chemistry': 78, 'Maths': 81, 'CS': 84}

(ii) Using pop() method: It deletes the key-value pair and returns the value of deleted

element.

 Syntax:

 dictionary-name.pop()

 Example:

 >>> marks

{'physics': 75, 'Chemistry': 78, 'Maths': 81, 'CS': 84}

>>> marks.pop('Maths')

81

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 91

9.7 CHECK THE EXISTANCE OF A KEY IN A DICTIONARY:

To check the existence of a key in dictionary, two operators are used:

(i) in : it returns True if the given key is present in the dictionary, otherwise False.

(ii) not in : it returns True if the given key is not present in the dictionary, otherwise

 False.

Example:

>>> marks = { "physics" : 75, "Chemistry" : 78, "Maths" : 81, "CS":78 }

>>> 'Chemistry' in marks

True

>>> 'CS' not in marks

False

>>> 78 in marks # in and not in only checks the existence of keys not values

False

However, if you need to search for a value in dictionary, then you can use in operator

with the following syntax:

Syntax:

value in dictionary-name. values()

Example:

>>> marks = { "physics" : 75, "Chemistry" : 78, "Maths" : 81, "CS":78 }

>>> 78 in marks.values()

True

9.8 PRETTY PRINTING A DICTIONARY:

What is Pretty Printing?

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 92

To print a dictionary in more readable and presentable form.

For pretty printing a dictionary you need to import json module and then you can use

dumps() function from json module.

Example:

>>> print(json.dumps(marks, indent=2))

OUTPUT:

{

 "physics": 75,

 "Chemistry": 78,

 "Maths": 81,

 "CS": 78

}

dumps() function prints key:value pair in separate lines with the number of spaces

which is the value of indent argument.

9.9 COUNTING FREQUENCY OF ELEMENTS IN A LIST USING DICTIONARY

Steps:

1. import the json module for pretty printing

2. Take a string from user

3. Create a list using split() function

4. Create an empty dictionary to hold words and frequency

5. Now make the word as a key one by one from the list

6. If the key not present in the dictionary then add the key in dictionary and count

7. Print the dictionary with frequency of elements using dumps() function.

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 93

Program:

import json

sentence=input("Enter a string: ")

L = sentence.split()

d={ }

for word in L:

 key=word

 if key not in d:

 count=L.count(key)

 d[key]=count

print("The frequqency of elements in the list is as follows: ")

print(json.dumps(d,indent=2))

9.10 DICTIONARY FUNCTIONS:

Consider a dictionary marks as follows:

>>> marks = { "physics" : 75, "Chemistry" : 78, "Maths" : 81, "CS":78 }

S.

No.
Function

Name
Description Example

1 len() Find the length of a

dictionary.

Syntax:
len (dictionary-name)

>>> len(marks)

4

2 clear() removes all elements

from the dictionary

Syntax:

dictionary-name.clear()

>>> marks.clear()

>>> marks

{ }

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 94

3. get() Returns value of a key.

Syntax:

dictionary-name.get(key)

>>> marks.get("physics")

75

Note: When key does not exist it returns no value without any error.

>>> marks.get('Hindi')

>>>

4 items() returns all elements as a

sequence of (key,value)

tuples in any order.

Syntax:

dictionary-name.items()

>>> marks.items()

dict_items([('physics', 75), ('Chemistry',

78), ('Maths', 81), ('CS', 78)])

Note: You can write a loop having two variables to access key: value pairs.

>>> seq=marks.items()

>>> for i, j in seq:

 print(j, i)

OUTPUT:

75 physics

78 Chemistry

81 Maths

78 CS

5 keys() Returns all keys in the

form of a list.

Syntax:

dictionary-name.keys()

>>> marks.keys()

dict_keys (['physics', 'Chemistry',

'Maths', 'CS'])

6 values() Returns all values in the

form of a list.

Syntax:

dictionary-name.values()

>>> marks.values()

dict_values([75, 78, 81, 78])

7 update() Merges two dictionaries.

Already present elements

are override.

Syntax:
dictionary1.update(dictionary2)

Example:

>>> marks1 = { "physics" : 75, "Chemistry" : 78, "Maths" : 81, "CS":78 }

>>> marks2 = { "Hindi" : 80, "Chemistry" : 88, "English" : 92 }

>>> marks1.update(marks2)

>>> marks1

{'physics': 75, 'Chemistry': 88, 'Maths': 81, 'CS': 78, 'Hindi': 80, 'English': 92}

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 95

CHAPTER-10

SORTING

10.1 DEFINITION:

 To arrange the elements in ascending or descending order.

In this chapter we shall discuss two sorting techniques:

1. Bubble Sort

2. Insertion Sort

1. BUBBLE SORT: Bubble sort is a simple sorting algorithm. It is based on comparisons, in

which each element is compared to its adjacent element and the elements are swapped if they

are not in proper order.

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 96

PROGRAM:

L=eval(input("Enter the elements:"))

n=len(L)

for p in range(0,n-1):

 for i in range(0,n-1):

 if L[i]>L[i+1]:

 L[i], L[i+1] = L[i+1],L[i]

print("The sorted list is : ", L)

OUTPUT:

Enter the elements:[60, 24, 8, 90, 45, 87, 12, 77]

The sorted list is : [8, 12, 24, 45, 60, 77, 87, 90]

Calculating Number of Operations (Bubble sort):

Step CODING No. of Operations

1 L=eval(input("Enter the elements:")) 1

2 n=len(L) #for example n=7 1

3 for p in range(0,n-1): one operation for each pass (executes 6 times, 0 to 5)

4 for i in range(0,n-1): executes 6 times for elements, same will repeat 6

times under each pass (outer loop) so 6x6=36
operations

5 if L[i]>L[i+1]: executes 6 times for comparisons in each pass, same

will repeat 6 times under each pass (outer loop) so

6x6=36 operations

6 L[i], L[i+1] = L[i+1],L[i] statement related to step-5, so 6x6=36 operations

7 print("The sorted list is : ", L) 1

 TOTAL: 1+1+6+36+36+36+1=117 operations

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 97

2. INSERTION SORT: Sorts the elements by shifting them one by one and inserting the

element at right position.

PROGRAM:

L=eval(input("Enter the elements: "))

n=len(L)

for j in range(1,n):

 temp=L[j]

 prev=j-1

 while prev>=0 and L[prev]>temp: # comparison the elements

 L[prev+1]=L[prev] # shift the element forward

 prev=prev-1

 L[prev+1]=temp #inserting the element at proper position

print("The sorted list is :",L)

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 98

OUTPUT:

Enter the elements: [45, 11, 78, 2, 56, 34, 90, 19]

The sorted list is : [2, 11, 19, 34, 45, 56, 78, 90]

Calculating Number of Operations (Insertion Sort):

Step CODING No. of Operations

1 L=eval(input("Enter the elements:")) 1

2 n=len(L) #for example n=7 1

3 for j in range(1,n):

Executes 6 times

4 temp=L[j]

one operation at a time, executes 6 times so 1x6 = 6

operations

5 prev=j-1

one operation at a time, executes 6 times so 1x6= 6

operations

6 while prev>=0 and L[prev]>temp: first time 1 comparison, second time 2, and so on. In

this case 1+2+3+4+5+6=21 operations

 L[prev+1]=L[prev] first time 1 element shifted, second time 2 and so on.

In this case 1+2+3+4+5+6= 21 operations

 prev=prev-1 21 operations

 L[prev+1]=temp element insertion at right place, 6 operations

7 print("The sorted list is : ", L) 1

 TOTAL: 1+1+6+6+6+21+21+21+6+1 = 90 operations

10.2 How insertion sort is better than bubble sort?

Bubble Sort Insertion Sort

Inefficient Efficient

Require more memory Does not require additional memory

Slow fast for small sequences

More operations Less operations

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 99

CHAPTER-11

DEBUGGING PROGRAMS

11.1 INTRODUCTION:

Errors in a program are known as ‘bugs’.

To remove the errors from a program, known as debugging.

11.2 TYPES OF ERRORS:

1. Compile Time Error

 a. Syntax Error

 b. Semantics Error

2. Run Time Error

3. Logical Error

1. Compile Time Error: Compile time errors are those errors that occur at the time of

 compilation of the program.

There are two types of compile time errors:

a. Syntax Error: These errors occur due to violation of grammatical rules of a

programming language.

for example:

TYPES OF ERRORS

COMPILE TIME ERROR

Syntax Errors Semantics Errors

RUN TIME ERROR LOGICAL ERROR

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 100

a=10

b=20

if a>b #Syntax error, : is missing

 Print(“a is greater than b”) # Syntax error, P is capital in Print statement

b. Semantics Error: Semantic errors occur when the statements written in the program are

not meaningful.

Example:

a+b = c # expression cannot come on the left side of the assignment operator.

2. Run Time Error: Errors that occur during the execution or running the program are

known as run time errors. When a program “crashed” or “abnormally terminated” during

the execution, then this type errors are run time errors.

Example: When a loop executes infinite time.

a=1

while a<5: # value of a is always less than 5, infinite loop

 print(a)

 a=a-1

3. Logical Error: These types of errors occur due to wrong logic. When a program

successfully executes but giving wrong output, then it is known as logical error.

Example:

a=10

b=20

c=30

average=a+b+c/3 #wrong logic to find the average

print(average)

OUTPUT:

40.0

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 101

11.3 Exception handling in python:

Exception: The unusual and unexpected condition other than syntax or logical errors,

encountered by a program at the time of execution, is called exception.

The purpose of exception handling mechanism is to provide means to detect and report

an exceptional circumstance, so that appropriate action can be taken.

Exception handling in python can be done using try and except blocks.

Syntax:

 try:

 # Code that may generate an exception

 except:

 # Code for handling the exception

Example:

num1=int(input("Enter first number :"))

num2=int(input("Enter second number: "))

try:

 r=num1/num2

 print("Result is :", r)

except:

 print("Divided by zero")

OUTPUT:

Enter first number :30

Enter second number: 0

Divided by zero

11.4 Steps to debug a program:

a. Carefully follow the syntax of a language

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 102

b. Spot the origin of error

c. Read the type of error and understand it well

d. Use intermediate print statements to know the value and type of a variable

e. Trace the code carefully

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 103

Explanation of Keywords:

a. True and False

True and False are the results of comparison operations or logical (Boolean) operations in

Python. For example:

>>> 3 = = 3

True

>>> 5 < = 4

False

>>> 7 > 2

True

>>> True or False

True

>>> True and False

False

Note:- True and False in python is same as 1 and 0.

Example:

>>> True = = 1

True

>>> False = = 0

True

>>> True + True

2

b. None

None is a special constant in Python that represents the absence of a value or a null value.

None does mean False, 0 or any empty list.

Example:

>>> None = = 0

https://pythonschoolkvs.wordpress.com/
LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

LENOVO
Highlight

https://pythonschoolkvs.wordpress.com/ Page 104

False

>>> None = = False

False

>>> None = = []

False

>>> x = None

>>> y = None

>>> x = = y

True

void functions that do not return anything will return a None object automatically. None is also

returned by functions in which the program flow does not encounter a return statement. For

example:

def My_Function() :

 x = 5

 y = 7

 z = x + y

sum = My_Function()

print(sum)

OUTPUT :

None

Another Example:

def ODD_EVEN(x) :

 if(x % 2) = = 0:

 return True

r = ODD_EVEN(7)

print(r)

OUTPUT :

None

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 105

Although this function has a return statement, it is not reached in every case. The function will

return True only when the input is even.

c. as

 as is used to create an alias while importing a module.

Example:

>>> import math as mymath

>>> mymath.sqrt(4)

2.0

d. assert

assert is used for debugging purposes.

 assert helps us to find bugs more conveniently.

 If the condition is true, nothing happens. But if the condition is false, AssertionError is

raised.

Syntax:

assert condition, message

example:

>>> x = 7

>>> assert x > 9, “The value is smaller”

Traceback (most recent call last):

File “<string>”, line 201, in runcode

File “<interactive input>”, line 1, in <module>

AssertionError: The value is smaller

e. def

def is used to define a user-defined function.

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 106

Syntax:

def function-name(parameters) :

f. del

del is used to delete the reference to an object. Everything is object in Python. We

can delete a variable reference using del

Syntax: del variable-name

>>> a = b = 9

>>>del a

>>> a

Traceback (most recent call last):

File “<string>”, line 201, in tuncode

File “<interactive input>”, line 1, in <module>

NameError : name ‘a’ is not defined

>>>b

9

.

del is also used to delete items from a list or a dictionary:

>>> x = [‘p’, ‘q’, ‘r’]

>>> del x[1]

>>> x

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 107

[‘q’, ‘r’]

g. except, raise, try

except, raise, try are used with exceptions in Python.

Exceptions are basically errors that suggests something went wrong while executing our

program

try...except blocks are used to catch exceptions in Python.

We can raise an exception explicitly with the raise keyword.

Syntax:

try:

 Try-block

except exception1:

 Exception1-block

except exception2:

 Exception2-block

else:

 Else-block

finally:

 Finally-block

example:

def reciprocal(num):

 try:

 r = 1/num

 except:

 print('Exception caught')

 return

 return r

print(reciprocal(10))

print(reciprocal(0))

Output

0.1

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 108

Exception caught

None

h. finally

finally is used with try…except block to close up resources or file streams.

i. from, import

import keyword is used to import modules into the current namespace. from…import is

used to import specific attributes or functions into the current namespace.

For example:

import math

 will import the math module.

Now we can use the sqrt() function inside it as math.sqrt(). But if we wanted to import just

the sqrt() function, this can done using from as

Example :

from math import sqrt

now we can use the function simply as sqrt(), no need to write math.sqrt().

j. global

global is used to declare that a variable inside the function is global (outside the function).

If we need to read the value of a global variable, it is not necessary to define it as global. This

is understood.

If we need to modify the value of a global variable inside a function, then we must declare it

with global. Otherwise a local variable with that name is created.

Example:

globvar = 10

def read1():

 print(globvar)

def write1():

 global globvar

 globvar = 5

def write2():

 globvar = 15

read1()

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 109

write1()

read1()

write2()

read1()

Output

10

5

5

k. in

in is used to test if a sequence (list, tuple, string etc.) contains a value. It returns True if the

value is present, else it returns False. For example:

>>> a = [1, 2, 3, 4, 5]

>>> 5 in a

True

>>> 10 in a

False

The secondary use of in is to traverse through a sequence in for loop.

for i in 'hello':

 print(i)

Output

h

e

l

l

o

l. is

is keyword is used in Python for testing object identity.

While the = = operator is used to test if two variables are equal or not, is is used to test if the

two variables refer to the same object.

It returns True if the objects are identical and False if not.

>>> True is True

True

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 110

>>> False is False

True

>>> None is None

True

We know that there is only one instance of True, False and None in Python, so they are

identical.

>>> [] == []

True

>>> [] is []

False

>>> { } == { }

True

>>> { } is { }

False

An empty list or dictionary is equal to another empty one. But they are not identical objects as

they are located separately in memory. This is because list and dictionary are mutable (value

can be changed).

>>> '' == ''

True

>>> '' is ''

True

>>> () == ()

True

>>> () is ()

True

Unlike list and dictionary, string and tuple are immutable (value cannot be altered once

defined). Hence, two equal string or tuple are identical as well. They refer to the same memory

location.

m. lambda

lambda is used to create an anonymous function (function with no name). It is an

inline function that does not contain a return statement. It consists of an

expression that is evaluated and returned.

example:

a = lambda x: x*2

for i in range(1,6):

 print(a(i))

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 111

Output

2

4

6

8

10

Note: range (1,6) includes the value from 1 to 5.

n. nonlocal

The use of nonlocal keyword is very much similar to the global keyword. nonlocal is used to

declare a variable inside a nested function (function inside a function) is not local to it.

If we need to modify the value of a non-local variable inside a nested function, then we must

declare it with nonlocal. Otherwise a local variable with that name is created inside the nested

function.

Example:

def outer_function():

 a = 5

 def inner_function():

 nonlocal a

 a = 10

 print("Inner function: ",a)

 inner_function ()

 print("Outer function: ",a)

outer_function()

Output

Inner function: 10

Outer function: 10

Here, the inner_function() is nested within the outer_function().

The variable a is in the outer_function(). So, if we want to modify it in the inner_function(),

we must declare it as nonlocal. Notice that a is not a global variable.

Hence, we see from the output that the variable was successfully modified inside the

nested inner_function().

The result of not using the nonlocal keyword is as follows:

def outer_function ():

 a = 5

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 112

 def inner_function():

 a = 10

 print("Inner function: ",a)

 inner_function()

 print("Outer function: ",a)

outer_function()

Output

Inner function: 10

Outer function: 5

Here, we do not declare that the variable a inside the nested function is nonlocal. Hence, a new

local variable with the same name is created, but the non-local a is not modified as seen in our

output.

o. pass

pass is a null statement in Python. Nothing happens when it is executed. It is used

as a placeholder.

Suppose we have a function that is not implemented yet, but we want to implement it in the

future. Simply writing,

def function(args):

in the middle of a program will give us IndentationError. Instead of this, we construct a blank

body with the pass statement.

def function(args):

 pass

p. while

while is used for looping.

i = 5

while(i):

 print(i)

 i = i – 1

Output

5

4

3

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 113

2

1

q. with

with statement is used to wrap the execution of a block of code within methods

defined by the context manager.

Context manager is a class that implements enter and exit methods. Use of with statement

ensures that the exit method is called at the end of the nested block.

Example

with open('Book.txt', 'w') as my_book:

 my_file.write(' Computer Science ')

This example writes the text Computer Science to the file Book.txt. File objects

have enter and exit method defined within them, so they act as their own context manager.

First the enter method is called, then the code within with statement is executed and finally

the exit method is called. exit method is called even if there is an error. It basically closes the

file stream.

r. yield

yield is used inside a function like a return statement. But yield returns a generator.

Generator is an iterator that generates one item at a time. A large list of value will take up a

lot of memory. Generators are useful in this situation as it generates only one value at a time

instead of storing all the values in memory.

Example:

>>> g = (2**x for x in range(100))

will create a generator g which generates the values 20 to 299. We can generate the numbers

using the next() function as shown below:

>>> next(g)

1

>>> next(g)

2

>>> next(g)

4

>>> next(g)

8

https://pythonschoolkvs.wordpress.com/

https://pythonschoolkvs.wordpress.com/ Page 114

>>> next(g)

16

And so on…

This type of generator is returned by the yield statement from a function.

Example:

def generator():

 for i in range(6):

 yield i*i

g = generator()

for i in g:

 print(i)

Output

0

1

4

9

16

25

https://pythonschoolkvs.wordpress.com/

